you can evaluate as fast a x km radius

Especially Geophysicists need to easy determinations by considering to some chapters.For example,production to conclusion with centre coordinate  and  circle radius value as pre-defined under dynamic projection conditions that among such chapters.Thus,compiled a example;








Also,I checked to compilation conclusion at classic python console with png file based on raw data;







Detailed Code Information



import numpy as np
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches

# example: draw circle with 45 degree radius around the North pole
lat = 51.4198101
lon = -0.950854653584
r = 45

# Define the projection used to display the circle:
proj = ccrs.Orthographic(central_longitude=lon, central_latitude=lat)


def compute_radius(ortho, radius_degrees):
    phi1 = lat + radius_degrees if lat <= 0 else lat - radius_degrees
    _, y1 = ortho.transform_point(lon, phi1, ccrs.PlateCarree())
    return abs(y1)

# Compute the required radius in projection native coordinates:
r_ortho = compute_radius(proj, r)

# We can now compute the correct plot extents to have padding in degrees:
pad_radius = compute_radius(proj, r + 5)

# define image properties
width = 800
height = 800
dpi = 96
resolution = '50m'

# create figure
fig = plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi)
ax = fig.add_subplot(1, 1, 1, projection=proj)
# Deliberately avoiding set_extent because it has some odd behaviour that causes
# errors for this case. However, since we already know our extents in native
# coordinates we can just use the lower-level set_xlim/set_ylim safely.
ax.set_xlim([-pad_radius, pad_radius])
ax.set_ylim([-pad_radius, pad_radius])
ax.imshow(np.tile(np.array([[cfeature.COLORS['water'] * 255]], dtype=np.uint8), [2, 2, 1]), origin='upper', transform=ccrs.PlateCarree(), extent=[-180, 180, -180, 180])
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'land', resolution, edgecolor='black', facecolor=cfeature.COLORS['land']))
ax.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_0_countries', resolution, edgecolor='black', facecolor='none'))
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'lakes', resolution, edgecolor='none', facecolor=cfeature.COLORS['water']), alpha=0.5)
ax.add_feature(cfeature.NaturalEarthFeature('physical', 'rivers_lake_centerlines', resolution, edgecolor=cfeature.COLORS['water'], facecolor='none'))
ax.add_feature(cfeature.NaturalEarthFeature('cultural', 'admin_1_states_provinces_lines', resolution, edgecolor='gray', facecolor='none'))
ax.add_patch(mpatches.Circle(xy=[lon, lat], radius=r_ortho, color='red', alpha=0.3, transform=proj, zorder=30))
fig.tight_layout()
plt.savefig('CircleTest.png', dpi=dpi)
plt.show()





Yorumlar

Bu blogdaki popüler yayınlar

Interesting information intermsof Eartquake Statisticians

Obspy-about Developments

Informations about experimental plate structures